Abstract

Earth-abundant transition metal (Fe, Co, or Ni) and nitrogen-doped porous carbon electrocatalysts (M-N-C, where M denotes the metal) were synthesized from cheap precursors via silica-templated pyrolysis. The effect of the material composition and structure (i.e., porosity, nitrogen doping, metal identity, and oxygen functionalization) on the activity for the electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) was investigated. The metal-free N-C exhibits a high selectivity but low activity for CO<sub>2</sub>RR. Incorporation of the Fe and Ni, but not Co, sites in the N-C material is able to significantly enhance the activity. The general selectivity order for CO<sub>2</sub>-to-CO conversion in water is found to be Ni > Fe ≫ Co with respect to the metal in M-N-C, while the activity follows Ni, Fe ≫ Co. Notably, the Ni-doped carbon exhibits a high selectivity with a faradaic efficiency of 93% for CO production. Tafel analysis shows a change of the rate-determining step as the metal overtakes the role of the nitrogen as the most active site. Recording the X-ray photoelectron spectra and extended X-ray absorption fine structure demonstrates that the metals are atomically dispersed in the carbon matrix, most likely coordinated to four nitrogen atoms and with carbon atoms serving as a second coordination shell. Presumably, the carbon atoms in the second coordination shell of the metal sites in M-N-C significantly affect the CO<sub>2</sub>RR activity because the opposite reactivity order is found for carbon supported metal meso-tetraphenylporphyrin complexes. From a better understanding of the relationship between the CO<sub>2</sub>RR activity and the material structure, it becomes possible to rationally design high-performance porous carbon electrocatalysts involving earth-abundant metals for CO<sub>2</sub> valorization

    Similar works

    Full text

    thumbnail-image

    Available Versions