<i>p</i>- and <i>n</i>‑type
Doping Effects on the Electrical and Ionic Conductivities of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Anode Materials
- Publication date
- Publisher
Abstract
We systematically
investigated p- and n-type doping effects on
the electrical conductivity of spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) by designing theoretically stoichiometric Li<sub>11</sub>Ti<sub>13</sub>O<sub>32</sub> (p-type) and Li<sub>10</sub>Ti<sub>14</sub>O<sub>32</sub> (n-type) because LTO has a nonstoichiometric
(Li)<sub>8</sub>[Li<sub>8/3</sub>Ti<sub>40/3</sub>]O<sub>32</sub> formula
with the <i>Fd</i>3<i>m̅</i> space group.
In this work, we present evidence that the electronic modification
plays a fundamental role in the electrical conductivity of LTO, especially,
n-type Li<sub>10</sub>Ti<sub>14</sub>O<sub>32</sub>, which has superior
electrical conductivity compared to p-type Li<sub>11</sub>Ti<sub>13</sub>O<sub>32</sub>. We proposed a way to improve the electrical conductivity
of pristine LTO by halogen ion doping, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12–<i>x</i></sub>Hal<sub><i>x</i></sub> (Hal: F, Cl, and Br), for an n-type doping effect. However,
the substitution of halogen ions can enhance the electrical conductivity
by mixing Ti<sup>4+</sup>/Ti<sup>3+</sup> and impede the Li ion diffusion
in the lattice. The larger size of Cl and Br increases the Li ion
diffusion energy barrier with van der Waals repulsion. Therefore,
our theoretical investigations of the effects of halogen doping on
the electrical and ionic conductivities anticipate that the smaller-sized
F may be the most promising dopant for improving the performance of
LTO