<i>p</i>- and <i>n</i>‑type Doping Effects on the Electrical and Ionic Conductivities of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Anode Materials

Abstract

We systematically investigated p- and n-type doping effects on the electrical conductivity of spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) by designing theoretically stoichiometric Li<sub>11</sub>Ti<sub>13</sub>O<sub>32</sub> (p-type) and Li<sub>10</sub>Ti<sub>14</sub>O<sub>32</sub> (n-type) because LTO has a nonstoichiometric (Li)<sub>8</sub>[Li<sub>8/3</sub>Ti<sub>40/3</sub>]­O<sub>32</sub> formula with the <i>Fd</i>3<i>m̅</i> space group. In this work, we present evidence that the electronic modification plays a fundamental role in the electrical conductivity of LTO, especially, n-type Li<sub>10</sub>Ti<sub>14</sub>O<sub>32</sub>, which has superior electrical conductivity compared to p-type Li<sub>11</sub>Ti<sub>13</sub>O<sub>32</sub>. We proposed a way to improve the electrical conductivity of pristine LTO by halogen ion doping, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12–<i>x</i></sub>Hal<sub><i>x</i></sub> (Hal: F, Cl, and Br), for an n-type doping effect. However, the substitution of halogen ions can enhance the electrical conductivity by mixing Ti<sup>4+</sup>/Ti<sup>3+</sup> and impede the Li ion diffusion in the lattice. The larger size of Cl and Br increases the Li ion diffusion energy barrier with van der Waals repulsion. Therefore, our theoretical investigations of the effects of halogen doping on the electrical and ionic conductivities anticipate that the smaller-sized F may be the most promising dopant for improving the performance of LTO

    Similar works

    Full text

    thumbnail-image

    Available Versions