Laser-Induced Flash-Evaporation Printing CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Thin Films for High-Performance Planar Solar Cells

Abstract

Organic–inorganic hybrid perovskites have been emerging as promising light-harvesting materials for high-efficiency solar cells recently. Compared to solution-based methods, vapor-based deposition technologies are more suitable in preparing compact, uniform, and large-scale perovskite thin films. Here, we utilized flash-evaporation printing (FEP), a laser-induced ultrafast single source evaporation method employing a carbon nanotube evaporator, to fabricate high-quality methylammonium lead iodide perovskite thin films. Stoichiometric films with pure tetragonal perovskite phase can be achieved using a controlled methylammonium iodide to lead iodide ratio in evaporation precursors. The film crystallinity and crystal grain growth could further be promoted after postannealing. Planar solar cells (0.06 cm<sup>2</sup>) employing these perovskite films exhibit a champion power conversion efficiency (PCE) of 16.8% with insignificant hysteresis, which is among the highest reported PCEs using vapor-based deposition methods. Large-area (1 cm<sup>2</sup>) devices based on such perovskite films also achieved a stabilized PCE of 11.2%, indicating the feasibility and scalability of our FEP method in fabricating large-area perovskite films for other optoelectronic applications

    Similar works

    Full text

    thumbnail-image

    Available Versions