Apatites can accommodate a large number of vacancies and afford multiple ionic substitutions determining their reactivity and biological properties. Unlike other biominerals they offer a unique adaptability to various biological functions. The diversity of apatites is essentially related to their structure and to their mode of formation. Special charge compensation mechanisms allow molecular insertions and ion substitutions and determine to some extent their solubility behaviour. Apatite formation at physiological pH involves a structured surface hydrated layer nourishing the development of apatite domains. This surface layer contains relatively mobile and exchangeable ions, and is mainly responsible for the surface properties of apatite crystals from a chemical (dissolution properties, ion exchange ability, ion insertions, molecule adsorption and insertions) and a physical (surface charge, interfacial energy) point of view. These characteristics are used by living organisms and can also be exploited in material science