'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
We address the problem of detecting a signal of interest (SOI), using multiple observations in the primary data, in a background of noise with unknown covariance matrix. We consider a situation where the signal signature is not known perfectly, but its angle with a nominal and known signature is bounded. Furthermore, we consider a possible scaling
inhomogeneity between the primary and the secondary noise covariance matrix. First, assuming that the noise covariance matrix is known, we derive the generalized-likelihood ratio test (GLRT), which involves solving a semidefinite programming problem. Next, we substitute the unknown
noise covariance matrix for its estimate obtained from secondary data, to yield the final detector. The latter is compared with a detector that assumes a known signal signature