research

Boolean decomposition for AIG optimization

Abstract

Restructuring techniques for And-Inverter Graphs (AIG), such as rewriting and refactoring, are powerful, scalable and fast, achieving highly optimized AIGs after few iterations. However, these techniques are biased by the original AIG structure and limited by single output optimizations. This paper investigates AIG optimization for area, exploring how far Boolean methods can reduce AIG nodes through local optimization.Boolean division is applied for multi-output functions using two-literal divisors and Boolean decomposition is introduced as a method for AIG optimization. Multi-output blocks are extracted from the AIG and optimized, achieving a further AIG node reduction of 7.76% on average for ITC99 and MCNC benchmarks.Peer ReviewedPostprint (author's final draft

    Similar works