Treewidth, crushing, and hyperbolic volume


We prove that there exists a universal constant cc such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most cc times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bounded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former argument (in V1) used a construction that relied on a wrong theorem. Section 5.1 has also been adjusted to the new construction. Various other arguments have been clarifie

    Similar works