Azobenzene Molecular Machine: Light-Induced Wringing
Gel Fabricated from Asymmetric Macrogelator
- Publication date
- Publisher
Abstract
To develop light-triggered
wringing gels, an asymmetric macrogelator
(1AZ3BP) was newly synthesized by the chemically bridging a photoisomerizable
azobenzene (1AZ) molecular machine and a biphenyl-based (3BP) dendron
with a 1,4-phenylenediformamide connector. 1AZ3BP was self-assembled
into a layered superstructure in the bulk state, but 1AZ3BP formed
a three-dimensional (3D) network organogel in solution. Upon irradiating
UV light onto the 3D network organogel, the solvent of the organogel
was squeezed and the 3D network was converted to the layered morphology.
It was realized that the metastable 3D network organogels were fabricated
mainly due to the nanophase separation in solution. UV isomerization
of 1AZ3BP provided sufficient molecular mobility to form strong hydrogen
bonds for the construction of the stable layered superstructure. The
light-triggered wringing gels can be smartly applied in remote-controlled
generators, liquid storages, and sensors