research

Riesz transforms on solvable extensions of stratified groups

Abstract

Let G=NAG = N \rtimes A, where NN is a stratified group and A=RA = \mathbb{R} acts on NN via automorphic dilations. Homogeneous sub-Laplacians on NN and AA can be lifted to left-invariant operators on GG and their sum is a sub-Laplacian Δ\Delta on GG. Here we prove weak type (1,1)(1,1), LpL^p-boundedness for p(1,2]p \in (1,2] and H1L1H^1 \to L^1 boundedness of the Riesz transforms YΔ1/2Y \Delta^{-1/2} and YΔ1ZY \Delta^{-1} Z, where YY and ZZ are any horizontal left-invariant vector fields on GG, as well as the corresponding dual boundedness results. At the crux of the argument are large-time bounds for spatial derivatives of the heat kernel, which are new when Δ\Delta is not elliptic.Comment: 20 pages. arXiv admin note: text overlap with arXiv:1504.0386

    Similar works