research

Majorana Superconducting Qubit

Abstract

We propose a platform for universal quantum computation that uses conventional ss-wave superconducting leads to address a topological qubit stored in spatially separated Majorana bound states in a multi-terminal topological superconductor island. Both the manipulation and read-out of this "Majorana superconducting qubit" are realized by tunnel couplings between Majorana bound states and the superconducting leads. The ability of turning on and off tunnel couplings on-demand by local gates enables individual qubit addressability while avoiding cross-talk errors. By combining the scalability of superconducting qubit and the robustness of topological qubits, the Majorana superconducting qubit may provide a promising and realistic route towards quantum computation

    Similar works