DmRecQ4 proteins without the SLD2 domain cannot rescue either cell cycle or proliferation defects while those without the Drosophila specific domain, or containing only the first 1234aa show differential effects on these parameters.

Abstract

<p>A) Diagrammatic representation to show the deletions of the SLD2 homology domain, the Drosophila specific domain (228–610) and the 1234–1579 region. B) Cells expressing full length DmRecQ4 either with (red) or without (blue) the SLD2 domain were challenged with dsRNA corresponding to the N (NRecQ4) and C (CRecQ4) terminal regions of DmRecQ4. Cell proliferation was measured by cell count on days 4, 5 and 6. C) Control cells (S2) and cells expressing full length DmRecQ4 either with (FL) or without (FΔSld2) the SLD2 domain were challenged with dsRNA corresponding to the N terminal region of DmRecQ4.The cell cycle profile of the cells was measured by FACS analysis cell on days 0, 4, 5 and 6. D) Control cells (S2), cells expressing the Drosophila specific deletion DmRecQ4 (Δ228–610) and cells expressing the first 1234aa only (Δ1234–1579) were challenged with dsRNA corresponding to the N (NRecQ4) and C (CRecQ4) terminal regions of DmRecQ4. Cell proliferation was measured by cell count on days 3, 5 and 7. E) Control cells (S2), cells expressing the Drosophila specific deletion DmRecQ4 (Δ228–610) and cells expressing the first 1234aa only (D1234–1579) were challenged with dsRNA corresponding to the N (NRecQ4) and C (CRecQ4) terminal regions of DmRecQ4. The cell cycle profile of the cells was measured by FACS analysis on days 0, 3, 5 and 7.</p

    Similar works

    Full text

    thumbnail-image