Abstract

Photoinduced formation, separation, and buildup of multiple redox equivalents are an integral part of cycles for producing solar fuels in dye-sensitized photoelectrosynthesis cells (DSPECs). Excitation wavelength-dependent electron injection, intra-assembly electron transfer, and pH-dependent back electron transfer on TiO<sub>2</sub> were investigated for the molecular assembly [((PO<sub>3</sub>H<sub>2</sub>-CH<sub>2</sub>)-bpy)<sub>2</sub>Ru<sub>a</sub>(bpy-NH-CO-trpy)­Ru<sub>b</sub>(bpy)­(OH<sub>2</sub>)]<sup>4+</sup> ([TiO<sub>2</sub>–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>II</sup>–OH<sub>2</sub>]<sup>4+</sup>; ((PO<sub>3</sub>H<sub>2</sub>-CH<sub>2</sub>)<sub>2</sub>-bpy = ([2,2′-bipyridine]-4,4′-diylbis­(methylene))­diphosphonic acid); bpy-ph-NH-CO-trpy = 4-([2,2′:6′,2″-terpyridin]-4′-yl)-<i>N</i>-((4′-methyl-[2,2′-bipyridin]-4-yl)­methyl) benzamide); bpy = 2,2′-bipyridine). This assembly combines a light-harvesting chromophore and a water oxidation catalyst linked by a synthetically flexible saturated bridge designed to enable long-lived charge-separated states. Following excitation of the chromophore, rapid electron injection into TiO<sub>2</sub> and intra-assembly electron transfer occur on the subnanosecond time scale followed by microsecond–millisecond back electron transfer from the semiconductor to the oxidized catalyst, [TiO<sub>2</sub>(e<sup>–</sup>)–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>III</sup>–OH<sub>2</sub>]<sup>4+</sup>→[TiO<sub>2</sub>–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>II</sup>–OH<sub>2</sub>]<sup>4+</sup>

    Similar works

    Full text

    thumbnail-image

    Available Versions