Photoinduced Electron
Transfer in a Chromophore–Catalyst
Assembly Anchored to TiO<sub>2</sub>
- Publication date
- Publisher
Abstract
Photoinduced formation, separation, and buildup of multiple
redox
equivalents are an integral part of cycles for producing solar fuels
in dye-sensitized photoelectrosynthesis cells (DSPECs). Excitation
wavelength-dependent electron injection, intra-assembly electron transfer,
and pH-dependent back electron transfer on TiO<sub>2</sub> were investigated
for the molecular assembly [((PO<sub>3</sub>H<sub>2</sub>-CH<sub>2</sub>)-bpy)<sub>2</sub>Ru<sub>a</sub>(bpy-NH-CO-trpy)Ru<sub>b</sub>(bpy)(OH<sub>2</sub>)]<sup>4+</sup> ([TiO<sub>2</sub>–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>II</sup>–OH<sub>2</sub>]<sup>4+</sup>; ((PO<sub>3</sub>H<sub>2</sub>-CH<sub>2</sub>)<sub>2</sub>-bpy = ([2,2′-bipyridine]-4,4′-diylbis(methylene))diphosphonic
acid); bpy-ph-NH-CO-trpy = 4-([2,2′:6′,2″-terpyridin]-4′-yl)-<i>N</i>-((4′-methyl-[2,2′-bipyridin]-4-yl)methyl)
benzamide); bpy = 2,2′-bipyridine). This assembly combines
a light-harvesting chromophore and a water oxidation catalyst linked
by a synthetically flexible saturated bridge designed to enable long-lived
charge-separated states. Following excitation of the chromophore,
rapid electron injection into TiO<sub>2</sub> and intra-assembly electron
transfer occur on the subnanosecond time scale followed by microsecond–millisecond
back electron transfer from the semiconductor to the oxidized catalyst,
[TiO<sub>2</sub>(e<sup>–</sup>)–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>III</sup>–OH<sub>2</sub>]<sup>4+</sup>→[TiO<sub>2</sub>–Ru<sub>a</sub><sup>II</sup>–Ru<sub>b</sub><sup>II</sup>–OH<sub>2</sub>]<sup>4+</sup>