Molecular evolution of breast cancer cells leads to a chemoresistant phenotype and down-regulation of miR-200c.

Abstract

<p>A) Molecular Evolution Assay. The epithelial breast cancer cell line BT474 was sequentially treated with chemotherapy. Cells were treated with 50 nM doxorubicin for 72 hours. Subsequently, medium was replaced by fresh medium until cells recovered and reached a confluency of 80%. Finally, cells were splitted for RNA isolation, cell lysis (protein), cytotoxicity assays and the next treatment round. R0 represents the untreated control cell line, whereas R1, R2, R3 and R4 represents BT474 cells that are treated for one, two, three and four times, respectively. B) Susceptibility to doxorubicin treatment. BT474 cells of R1 to R4 were treated with 0.1 and 10 µM doxorubicin for 72 hours. A CellTiter Glo assay was carried out to determine cell viability. Results are indicated as percentage of viable cells normalized to mock treated cells. C) Cell morphology of untreated and treated BT474 cells. Microscopic pictures (phase contrast) were taken from untreated BT474 cells (R0) and from doxorubicin treated and recovered cells of R4. D) Epithelial and mesenchymal marker expression in BT474 cells of R0, R2 and R4 of the Molecular Evolution Assay. E-Cadherin and Vimentin protein levels were determined by western blot analysis. Actin was used as loading control. E) miR-200c expression in BT474 cells that have undergone molecular evolution. Quantitative RT-PCR was performed to analyze miR-200c levels in BT474 cells of R1 to R4. miR-200c expression was thereby normalized to miR-191. Results are depicted as fold expression compared to the untreated control cell line (R0). Experiments were done in triplicates. For statistical analysis a student’s t-test was performed. (*p<0.05; **p<0.01; ***p<0.001).</p

    Similar works

    Full text

    thumbnail-image

    Available Versions