Room Temperature Metalation of 2H-TPP Monolayer on Iron and Nickel Surfaces by Picking up Substrate Metal Atoms


Here, it is demonstrated, using high-resolution X-ray spectroscopy and density functional theory calculations, that 2<i>H</i>-tetraphenyl porphyrins metalate at room temperature by incorporating a surface metal atom when a (sub)monolayer is deposited on 3d magnetic substrates, such as Fe(110) and Ni(111). The calculations demonstrate that the redox metalation reaction would be exothermic when occurring on a Ni(111) substrate with an energy gain of 0.89 eV upon embedding a Ni adatom in the macrocycle. This is a novel way to form, <i>via</i> chemical modification and supramolecular engineering, 3d-metal–organic networks on magnetic substrates with an intimate bond between the macrocycle molecular metal ion and the substrate atoms. The achievement of a complete metalation by Fe and Ni can be regarded as a test case for successful preparation of spintronic devices by means of molecular-based magnets and inorganic magnetic substrates

    Similar works

    Full text


    Available Versions