The slow deformation of terrestrial orbits in the medium range, subject to
lunisolar resonances, is well approximated by a family of Hamiltonian flow with
2.5 degree-of-freedom. The action variables of the system may experience
chaotic variations and large drift that we may quantify. Using variational
chaos indicators, we compute high-resolution portraits of the action space.
Such refined meshes allow to reveal the existence of tori and structures
filling chaotic regions. Our elaborate computations allow us to isolate precise
initial conditions near specific zones of interest and study their asymptotic
behaviour in time. Borrowing classical techniques of phase- space
visualisation, we highlight how the drift is mediated by the complement of the
numerically detected KAM tori.Comment: 22 pages, 11 figures, 1 table, 52 references. Comments and feedbacks
greatly appreciated. This article is part of the Research Topic `The
Earth-Moon System as a Dynamical Laboratory', confer
https://www.frontiersin.org/research-topics/5819/the-earth-moon-system-as-a-dynamical-laborator