In this work, we provide the first lattice-based group signature that offers
full dynamicity (i.e., users have the flexibility in joining and leaving the
group), and thus, resolve a prominent open problem posed by previous works.
Moreover, we achieve this non-trivial feat in a relatively simple manner.
Starting with Libert et al.'s fully static construction (Eurocrypt 2016) -
which is arguably the most efficient lattice-based group signature to date, we
introduce simple-but-insightful tweaks that allow to upgrade it directly into
the fully dynamic setting. More startlingly, our scheme even produces slightly
shorter signatures than the former, thanks to an adaptation of a technique
proposed by Ling et al. (PKC 2013), allowing to prove inequalities in
zero-knowledge. Our design approach consists of upgrading Libert et al.'s
static construction (EUROCRYPT 2016) - which is arguably the most efficient
lattice-based group signature to date - into the fully dynamic setting.
Somewhat surprisingly, our scheme produces slightly shorter signatures than the
former, thanks to a new technique for proving inequality in zero-knowledge
without relying on any inequality check. The scheme satisfies the strong
security requirements of Bootle et al.'s model (ACNS 2016), under the Short
Integer Solution (SIS) and the Learning With Errors (LWE) assumptions.
Furthermore, we demonstrate how to equip the obtained group signature scheme
with the deniability functionality in a simple way. This attractive
functionality, put forward by Ishida et al. (CANS 2016), enables the tracing
authority to provide an evidence that a given user is not the owner of a
signature in question. In the process, we design a zero-knowledge protocol for
proving that a given LWE ciphertext does not decrypt to a particular message