Abstract

<div><p>(A) Exposure of IT LPS-injected mice to hypoxic (10%) oxygen levels for 48 h atmosphere leads to a significantly decreased accumulation of PMNs (left graph), production of LPS-triggered oxygen reactive metabolites in lungs (center graph), and improved lung gas exchange (right graph) compared to a control group of endotoxin-treated mice that were kept at ambient (21%) oxygen. To standardize conditions, the arterial blood samples were taken 15 min after return of the previously hypoxia-exposed animals to normal atmosphere.</p> <p>(B) Treatment by a shorter period of hypoxia attenuates PMN sequestration (left graph) and lung vascular permeability (right graph). Hypoxic treatment of mice even for only 24 h was sufficient to delay PMN sequestration and to diminish the increase in lung vascular permeability.</p> <p>(C) Histologic evidence for the hypoxic inhibition of pulmonary PMN sequestration. Quantitative analysis of lung slices by a pathologist blinded to the experimental design revealed inhibition of PMN sequestration in IT LPS-injected mice following 4-h exposure to hypoxia. Hypoxia not only attenuated PMN accumulation, but the lung tissue damage was also significantly decreased as assessed by the LIS (<i>n</i> = 9, mean ± standard deviation). The representative H&E-stained slices in the right two photomicrographs show less intravascular granulocyte sequestration, less thickening of the alveolocapillary membrane, and almost no granulocytes in the alveolar spaces as compared to IT endotoxin-injected animals breathing 21% O<sub>2</sub>. These observations demonstrate that hypoxia also inhibited the transmigration of granulocytes from capillaries into the alveolar spaces.</p></div

    Similar works

    Full text

    thumbnail-image

    Available Versions