Easy Fabrication of Macroporous Gold Films Using Graphene Sheets as a Template

Abstract

We demonstrate a facile new and environmentally friendly strategy to fabricate monolithic macroporous gold (MPG) films using graphene sheets as a sacrificial template. Gold nanoparticle (AuNP) decorated graphene sheets were prepared by a one-pot simultaneous reduction of graphene oxide (GO) and gold precursor (HAuCl<sub>4</sub>) by sodium citrate. Two thermal annealing methods, direct thermal annealing in air and a two-step thermal treatment (in N<sub>2</sub> first and subsequently in air), were then employed to remove the template (graphene sheets), which can both produce macroporous structures, but with distinctly different morphologies. We additionally investigated the porosity evolution mechanism as well as the effect of graphene/Au weight ratio and annealing temperature on the nanoarchitecture. The two-step treatment has a more significant templating effect than direct thermal annealing to fabricate MPG films because of the existence of a preaggregation process of AuNPs assisted by graphene sheets in N<sub>2</sub>. Moreover, the resulting MPG films were found to exhibit excellent surface-enhanced Raman scattering (SERS) activity. Our method can be hopefully extended to the synthesis of other porous materials (such as Ag, Cu, Pt, and ceramic) and much wider applications

    Similar works

    Full text

    thumbnail-image

    Available Versions