Microfluidic
Device for Efficient Airborne Bacteria Capture and Enrichment
- Publication date
- Publisher
Abstract
Highly efficient capture and enrichment
is always the key for rapid analysis of airborne pathogens. Herein
we report a simple microfluidic device which is capable of fast and
efficient airborne bacteria capture and enrichment. The device was
validated with <i>Escherichia coli</i> (<i>E. coli</i>) and <i>Mycobacterium smegmatis</i>. The results showed
that the efficiency can reach close to 100% in 9 min. Compared with
the traditional sediment method, there is also great improvement with
capture limit. In addition, various flow rate and channel lengths
have been investigated to obtain the optimized condition. The high
capture and enrichment might be due to the chaotic vortex flow created
in the microfluidic channel by the staggered herringbone mixer (SHM)
structure, which is also confirmed with flow dynamic mimicking. The
device is fabricated from polydimethylsiloxane (PDMS), simple, cheap,
and disposable, perfect for field application, especially in developing
countries with very limited modern instruments