The tetramer interface is required for cooperative DNA binding.

Abstract

<p>(A) DNA binding induces oligomerization of LANA<sub>DBD</sub>. In the absence of crosslinker (EGS), wild-type and F1037A/F1041A migrate as monomers (lanes 1 and 2). Addition of increasing concentrations of EGS produces mostly dimers and tetramers of wild-type (lanes 3–5). Addition of LBS1 DNA induces oligomerization (each successive band is the addition of one monomer) in wild-type (lanes 6–9). The oligomer interface mutant F1037A/F1041A has a greatly reduced propensity to form higher molecular weight oligomers (lanes 9–11). (B) Agarose gel EMSA of full-length FLAG-tagged LANA wild-type or mutant proteins (indicated above each lane) binding to DNA probes for LBS1 (lanes 1–9), or LBS1/2 (lanes 10–18). (C) Western blot of affinity purified FLAG-LANA proteins used for EMSA in panel B.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions