Cyclometalations on the Imidazo[1,2‑<i>a</i>][1,8]naphthyridine Framework

Abstract

Cyclometalation on the substituted imidazo­[1,2-<i>a</i>]­[1,8]­naphthyridine platform involves either the C<sub>3</sub>-aryl or C<sub>4</sub>′-aryl <i>ortho</i> carbon and the imidazo nitrogen N<sub>3</sub>′. The higher donor strength of the imidazo nitrogen in comparison to that of the naphthyridine nitrogen aids regioselective orthometalation at the C<sub>3</sub>/C<sub>4</sub>′-aryl ring with Cp*Ir<sup>III</sup> (Cp* = η<sup>5</sup>-pentamethylcyclopentadienyl). A longer reaction time led to double cyclometalations at C<sub>3</sub>-aryl and imidazo C<sub>5</sub>′-H, creating six- and five-membered metallacycles on a single skeleton. Mixed-metal Ir/Sn compounds are accessed by insertion of SnCl<sub>2</sub> into the Ir–Cl bond. Pd­(OAc)<sub>2</sub> afforded an acetate-bridged dinuclear ortho-metalated product involving the C<sub>3</sub>-aryl unit. Metalation at the imidazo carbon (C<sub>5</sub>′) was achieved via an oxidative route in the reaction of the bromo derivative with the Pd(0) precursor Pd<sub>2</sub>(dba)<sub>3</sub> (dba = dibenzylideneacetone). Regioselective C–H/Br activation on a rigid and planar imidazonaphthyridine platform is described in this work

    Similar works

    Full text

    thumbnail-image

    Available Versions