Role of Tumor Necrosis Factor-α in the Human Systemic Endotoxin-Induced Transcriptome

Abstract

<div><p>TNFα has been implicated in the pathogenesis of various inflammatory diseases. Different strategies to inhibit TNFα in patients with sepsis and chronic inflammatory conditions have shown contrasting outcomes. Although TNFα inhibitors are widely used in clinical practice, the impact of TNFα antagonism on white blood cell gene expression profiles during acute inflammation in humans <i>in vivo</i> has not been assessed. We here leveraged the established model of human endotoxemia to examine the effect of the TNFα antagonist, etanercept, on the genome-wide transcriptional responses in circulating leukocytes induced by intravenous LPS administration in male subjects. Etanercept pre-treatment resulted in a markedly dampened transcriptional response to LPS. Gene co-expression network analysis revealed this LPS-induced transcriptome can be categorized as TNFα responsive and non-responsive modules. Highly significant TNFα responsive modules include NF-kB signaling, antiviral responses and T-cell mediated responses. Within these TNFα responsive modules we delineate fundamental genes involved in epigenetic modifications, transcriptional initiation and elongation. Thus, we provide comprehensive information about molecular pathways that might be targeted by therapeutic interventions that seek to inhibit TNFα activity during human inflammatory diseases.</p></div

    Similar works