Compressed sensing (CS), mutual information (MI), and ensemble classifier predictions of HIV-1 Env positions constituting bnMAb epitopes for PGT 123, 123, 125, and 126.

Abstract

<p>The experimentally identified positions are defined as those at which alanine point mutations were observed to increase the measured IC<sub>50</sub> of the mutant by more than 30-fold relative to that of the wild type JR-CSF. Alanine scans were performed as part of the present work for PGT 143 and 145; data for PGT 121–135 were taken from Ref. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0080562#pone.0080562-Walker2" target="_blank">[51]</a>.</p><p><i>Footnote</i>: For each of the ten HIV-1 broadly neutralizing monoclonal antibodies (bnMAb) considered in this study, we report the residues identified by the compressed sensing (CS) classifier, positions identified by the mutual information (MI) classifier, and positions identified by the ensemble classifier (formed by combining the CS and MI predictions) predicted to lie within the bnMAb epitope. The number of residues identified by the CS classifier, <i>n<sub>CS</sub></i>, number of positions identified by the MI classifier, <i>n<sub>MI</sub></i>, number of positions predicted by the ensemble classifier, <i>n<sub>ENS</sub></i>, and number of positions identified by alanine scans, <i>n<sub>EXPT</sub></i>, may differ between bnMAbs.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions