Anti-Osteoclastogenic Activity of Praeruptorin A via Inhibition of p38/Akt-c-Fos-NFATc1 Signaling and PLCγ-Independent Ca<sup>2+</sup> Oscillation

Abstract

<div><p>Background</p><p>A decrease of bone mass is a major risk factor for fracture. Several natural products have traditionally been used as herbal medicines to prevent and/or treat bone disorders including osteoporosis. Praeruptorin A is isolated from the dry root extract of <i>Peucedanum praeruptorum</i> Dunn and has several biological activities, but its anti-osteoporotic activity has not been studied yet.</p><p>Materials and Methods</p><p>The effect of praeruptorin A on the differentiation of bone marrow–derived macrophages into osteoclasts was examined by phenotype assay and confirmed by real-time PCR and immunoblotting. The involvement of NFATc1 in the anti-osteoclastogenic action of praeruptorin A was evaluated by its lentiviral ectopic expression. Intracellular Ca<sup>2+</sup> levels were also measured.</p><p>Results</p><p>Praeruptorin A inhibited the RANKL-stimulated osteoclast differentiation accompanied by inhibition of p38 and Akt signaling, which could be the reason for praeruptorin A-downregulated expression levels of c-Fos and NFATc1, transcription factors that regulate osteoclast-specific genes, as well as osteoclast fusion-related molecules. The anti-osteoclastogenic effect of praeruptorin A was rescued by overexpression of NFATc1. Praeruptorin A strongly prevented the RANKL-induced Ca<sup>2+</sup> oscillation without any changes in the phosphorylation of PLCγ.</p><p>Conclusion</p><p>Praeruptorin A could exhibit its anti-osteoclastogenic activity by inhibiting p38/Akt-c-Fos-NFATc1 signaling and PLCγ-independent Ca<sup>2+</sup> oscillation.</p></div

    Similar works