Double exponential decay analysis in time- and Legendre-domain.

Abstract

<p>(<b>a,b</b>) The interaction of Ru(II) complexes with DNA (same as in in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090500#pone-0090500-g001" target="_blank">Fig. 1</a>) shows double exponential decay(<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090500#pone.0090500-Bazzicalupi1" target="_blank">[12]</a>, data courtesy of F. Secco, Univ Pisa,I). Same data fitted in t- (<b>a</b>) and L-domain (<b>b</b>). (<b>c</b>) Probability for the fitting error in the L-domain, , to be smaller than that in the t-domain, , represented as a function of and . Color code of the probability is shown beneath the plot. For each pair () 1000 trials were computed. (<b>d</b>) Relative difference of fitting errors, , as a function of and . Color code beneath the plot. 1000 trials per pixel. Left of the solid and dashed white lines in <b>a</b> and <b>b</b>, the success rate of the fit in the L-domain is larger that and , respectively. Left of the solid and dashed black lines in <b>c</b> and <b>d</b>, the success rate of the fit in the t-domain is larger that 50% and 95%, respectively. Relative error differences were calculated only for successful trials. (<b>e</b>) Success rate of fitting in the L-domain (solid) and t-domain (dashed) along the vertical line in <b>c</b>, i.e., as a function of with kept at .</p

    Similar works

    Full text

    thumbnail-image

    Available Versions