SNX17 knockdown diminishes the surface level of ApoER2 and reelin-induced dendritic development in neurons.

Abstract

<p>(<b>A, B</b>) The cell surface level of ApoER2 was determined in DIV 5 mouse cortical neurons co-transfected with HA-ApoER2 and either SNX17 shRNA or pLKO. The cell surface receptor was labeled 48 h after transfection with a mouse anti-HA antibody. To control for the absence of permeabilization, cells were simultaneously incubated with an antibody against the cytoplasmic tail of ApoER2. The intracellular ApoER2 was detected thereafter in the fixed and permeabilized neurons with a chicken anti-HA antibody. Images of individual cells (n = 10 for each condition) were captured by confocal microscopy and analyzed using ImageJ software, selecting the threshold for each channel to avoid background. Total fluorescence was calculated by adding the fluorescence of the permeabilized and non-permeabilized channels. (<b>C, D</b>) Mouse dissociated hippocampal neurons were transfected with GFP and the corresponding shRNA, treated with reelin for 3 days, fixed and analyzed by immunofluorescence. Images were captured by confocal microscopy and used for Sholl analysis (n = 20 cells per condition). (<b>E</b>) The length of dendrites of reelin treated cells was significantly reduced in SNX17 knockdown neurons *p<0.05; **p<0.01; ***p<0.001. Bars, 20 μm.</p

    Similar works

    Full text

    thumbnail-image