Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins
- Publication date
- Publisher
Abstract
Cellulose-based materials are widely used in analytical chemistry as platforms for chromatographic and immunodiagnostic techniques. Due to its countless advantages (<i>e.g.</i>, mechanical properties, three-dimensional structure, large surface to volume area, biocompatibility and biodegradability, and high industrial availability), paper has been rediscovered as a valuable substrate for sensors. Polymeric materials such as cellulosic paper present high protein capture ability, resulting in a large increase of detection signal and improved assay sensitivity. However, cellulose is a rather nonreactive material for direct chemical coupling. Aiming at developing an efficient method for controlled conjugation of cellulose-based materials with proteins, we devised and fabricated a hybrid scaffold based on the adsorption and <i>in situ</i> self-assembly of surface-oxidized Ni nanoparticles on filter paper, which serve as “docking sites” for the selective immobilization of proteins containing polyhistidine tags (His-tag). We demonstrate that the interaction between the nickel substrate and the His-tagged protein G is remarkably resilient toward chemicals at concentrations that quickly disrupt standard Ni-NTA and Ni-IDA complexes, so that this system can be used for applications in which a robust attachment is desired. The bioconjugation with His-tagged protein G allowed the binding of anti-<i>Salmonella</i> antibodies that mediated the immuno-capture of live and motile <i>Salmonella</i> bacteria. The versatility and biocompatibility of the nickel substrate were further demonstrated by enzymatic reactions