Molecule–Surface Recognition between Heterocyclic Aromatic Compounds and Kaolinite in Toluene Investigated by Molecular Theory of Solvation and Thermodynamic and Kinetic Experiments

Abstract

Molecular recognition interactions between kaolinite and a series of heterocyclic aromatic compounds (HAC) representative of the N- and S-containing moieties in petroleum asphaltene macromolecules are investigated using the three-dimensional reference interaction site model with the Kovalenko–Hirata closure approximation (3D-RISM-KH) theory of solvation and experimental techniques in toluene solvent. The statistical-mechanical 3D-RISM-KH molecular theory of solvation predicts the adsorption configuration and thermodynamics from the 3D site density distribution functions and total solvation free energy, respectively, for adsorption of HAC and toluene on kaolinite. Spectrophotometric measurements show that, among the HAC studied, only acridine and phenanthridine adsorb quantitatively on kaolinite. For these pyridinic HAC, the adsorption results fitted to the Langmuir isotherm in the monolayer domain suggest a uniform monolayer of HAC molecules. The 3D-RISM-KH studies predict that the aluminum hydroxide surface of kaolinite is preferred for HAC adsorption due to strong hydrogen bonding with the pyridinic N atoms, while the rest of the HAC adsorb weaker. Adsorption on the silicon oxide side is weak and delocalized, as evident from the 3D solvation free energy density. Toluene sites effectively compete with non-hydrogen bonding HAC, such as fused thiophenes, for the kaolinite surface. The adsorption enthalpy and phenanthridine-acridine loading ratio are calculated and correlated with the experimentally determined Langmuir constant and adsorption loading. This combined experimental and computational modeling approach is aimed to provide insight into the specific interactions among clays, bitumen, and solvents so as to help accelerate the development of environmentally friendly and efficient desorption systems for nonaqueous extraction of bitumen from Oil Sands, an important unconventional petroleum reserve

    Similar works

    Full text

    thumbnail-image

    Available Versions