Technical Factors Involved in the Measurement of Circulating MicroRNA Biomarkers for the Detection of Colorectal Neoplasia

Abstract

<div><p>Background</p><p>Circulating miRNAs are emerging as promising blood-based biomarkers for colorectal and other human cancers; however, technical factors that confound the development of these assays remain poorly understood and present a clinical challenge. The aim of this study was to systematically evaluate the effects of factors that may interfere with the accurate measurement of circulating miRNAs for clinical purposes.</p><p>Methods</p><p>Blood samples from 53 subjects, including routinely drawn serum samples, matched plasma from 30 subjects, and matched serum samples drawn before and after bowel preparation for colonoscopy from 29 subjects were collected. Additionally, 38 serum specimens stored in the clinical laboratory for seven days were used to test the stability of miRNAs. Hemolysis controls with serial dilutions of hemoglobin were prepared. RNA was extracted from serum, plasma or hemolyzed controls with spiked-in cel-miR-39, and levels of miR-21, miR-29a, miR-125b and miR-16 were examined by real-time RT-PCR. Hemolysis was measured by spectrophotometry.</p><p>Results</p><p>The expression levels of miR-16 and the degree of hemolysis were significantly higher in plasma than in serum (P<0.0001). Measured miR-21, miR-29a, miR-125b and miR-16 expression increased with hemoglobin levels in hemolyzed controls. The degree of hemolysis in serum samples correlated significantly with the levels of miR-21 (P<0.0001), miR-29a (P = 0.0002), miR-125b (P<0.0001) and miR-16 (P<0.0001). All four miRNAs showed significantly lower levels in sera that had been stored at 4°C for seven days (P<0.0001). Levels of miR-21 (P<0.0001), miR-29a (P<0.0001) and miR-16 (P = 0.0003), and the degree of hemolysis (P = 0.0002) were significantly higher in sera drawn after vs. before bowel preparation.</p><p>Conclusions</p><p>The measured levels of miRNAs in serum and plasma from same patients varied in the presence of hemolysis, and since hemolysis and other factors affected miRNA expression, it is important to consider these confounders while developing miRNA-based diagnostic assays.</p></div

    Similar works