Quantitative Measurements of Vibration Amplitude Using a Contact-Mode Freestanding Triboelectric Nanogenerator

Abstract

A vibration sensor is usually designed to measure the vibration frequency but disregard the vibration amplitude, which is rather challenging to be quantified due to the requirement of linear response. Here, we show the application of triboelectric nanogenerator (TENG) as a self-powered tool for quantitative measurement of vibration amplitude based on an operation mode, the contact-mode freestanding triboelectric nanogenerator (CF-TENG). In this mode, the triboelectrically charged resonator can be agitated to vibrate between two stacked stationary electrodes. Under the working principle with a constant capacitance between two electrodes, the amplitudes of the electric signals are proportional to the vibration amplitude of the resonator (provided that the resonator plate is charged to saturation), which has been illuminated both theoretically and experimentally. Together with its capability in monitoring the vibration frequency, the CF-TENG appears as the triboelectrification-based active sensor that can give full quantitative information about a vibration. In addition, the CF-TENG is also demonstrated as a power source for electronic devices

    Similar works

    Full text

    thumbnail-image

    Available Versions