The formation of polystyrene (PS)
supramolecular bottle-brushes
by self-assembly in cyclohexane of hydrogen-bonding tris(urea) units
decorated by PS chains was investigated using light and neutron scattering.
Atom transfer radical polymerization (ATRP) was used to control the
length of the PS side-chains and allowed the straightforward synthesis
of the targeted tris(urea)s. It was shown that their extent of self-assembly
strongly depended on the degree of polymerization and chemical nature
of the polymer side chains, in contrast with what was previously observed
with cyclic oligopeptides, another type of self-assembling units.
With sufficiently short PS side-chains, anisotropic supramolecular
bottle-brushes could be obtained. Their critical solubility temperature, <i>T</i><sub>c</sub>, was measured in cyclohexane, proving experimentally
for the first time that densely grafted PS bottle-brushes exhibit
a much lower <i>T</i><sub>c</sub> than linear PS or even
star-shaped PS of similar molecular weight