Docking models and analysis of PPARα residues required for binding to resveratrol.

Abstract

<p>(A) The four docking modes of resveratrol predicted using the GOLD 3.0 docking program [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0120865#pone.0120865.ref024" target="_blank">24</a>] with protein co-ordination data from the PPARα-GW409544 complex structure (PDB ID: 1K7L) and a standard docking protocol. (B) Superimposition of docking mode II of resveratrol (orange) on the structure of PPARα bound to GW409544, a potent PPARα agonist (green). Only the amino acids located near to GW409544 are displayed. The hydrogen bonds of Tyr314 and Tyr464 are shown as dashed green lines. (C) Binding free energies (∆∆Gbind (kcal/mol)) of the indicated PPARα amino acid residues, calculated by alanine scanning using data for the four predicted docking modes. (D) Activation of wild-type (WT) PPARα and its mutants by 5, 50 μM resveratrol or Wy-14643. BAECs were transiently transfected with PPRE-luc, wild-type or mutant GS-hPPARα, and pSV-β-gal. The data are presented as relative luciferase activities normalized to those of the β-galactosidase standard and as 1 for cells treated with DMSO (control), and represent the mean ± SD of three independent wells of cells. Similar results were obtained by two additional experiments. The data were calculated the relative luciferase activity in cells transfected with wild-type PPARα.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions