Abstract

Selective blockade of the orexin-1 receptor (OX<sub>1</sub>) has been suggested as a potential approach to drug addiction therapy because of its role in modulating the brain’s reward system. We have recently reported a series of tetrahydroisoquinoline-based OX<sub>1</sub> selective antagonists. Aimed at elucidating structure–activity relationship requirements in other regions of the molecule and further enhancing OX<sub>1</sub> potency and selectivity, we have designed and synthesized a series of analogues bearing a variety of substituents at the 1-position of the tetrahydroisoquinoline. The results show that an optimally substituted benzyl group is required for activity at the OX<sub>1</sub> receptor. Several compounds with improved potency and/or selectivity have been identified. When combined with structural modifications that were previously found to improve selectivity, we have identified compound <b>73</b> (RTIOX-251) with an apparent dissociation constant (<i>K</i><sub>e</sub>) of 16.1 nM at the OX<sub>1</sub> receptor and >620-fold selectivity over the OX<sub>2</sub> receptor. In vivo, compound <b>73</b> was shown to block the development of locomotor sensitization to cocaine in rats

    Similar works

    Full text

    thumbnail-image

    Available Versions