Illustration of replicator dynamics analyses for each type of S-MIG.

Abstract

<p>This figure illustrates all 24 types of S-MIG. The abbreviations are defined in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004232#pcbi.1004232.t001" target="_blank">Table 1</a>. Their vertical layering in the figure reflects the existence condition for the basin of attraction on the point (<i>x</i>, <i>y</i>, <i>z</i>) = (1, 0, 0) related to (<i>μ</i>, <i>δ</i>) under which a cooperative regime emerges. The frames represent the form of local stability at point (<i>x</i>, <i>y</i>, <i>z</i>) = (1, 0, 0): the point is unstable for each type in the top frame which corresponds to (A) in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004232#pcbi.1004232.g003" target="_blank">Fig 3</a>, is a non-isolated equilibrium for each type in the bottom right frame which corresponds to (B) in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004232#pcbi.1004232.g003" target="_blank">Fig 3</a>, and is asymptotically stable for each type in the bottom left frame which corresponds to (C) and (D) in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004232#pcbi.1004232.g003" target="_blank">Fig 3</a>.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions