Multiphase Oscillatory Flow Strategy for <i>in Situ</i> Measurement and Screening of Partition Coefficients

Abstract

Taking advantage of the difference between the surface energies of aqueous and organic solvents on a Teflon substrate, a fully automated small-scale strategy is developed on the basis of gas-driven oscillatory motion of a biphasic slug for high-throughput <i>in situ</i> measurement and screening of partition coefficients of organic substances between aqueous and organic phases. The developed oscillatory flow strategy enables single partition coefficient data point measurement within 8 min (including the sample preparation time) which is 360 times faster than the conventional “shake-flask” method, while using less than a 30 μL volume of the two phases and 9 nmol of the target organic substance. The developed multiphase strategy is validated using a conventional shake-flask technique. Finally, the developed strategy is extended to include automated screening of partition coefficients at physiological temperature

    Similar works

    Full text

    thumbnail-image

    Available Versions