Schematic illustration of the stop-change paradigm.
- Publication date
- Publisher
Abstract
<p>Circles indicate the four possible target locations, while the lines indicate the three possible reference lines. The red rectangle represents the STOP signal, the presentation of which (SSD) varied according to a staircase procedure (see text, for further details). The speaker icon represents the auditory CHANGE signal, which could be high (1300 Hz), medium (900 Hz) or low (500 Hz) in pitch. The pitch of the CHANGE signal indicates the new reference line to be used to judge the location (above vs. below) of the target stimulus (i.e., the white circle). The figure illustrates the sequence of the events (from left to right) for the GO condition (above panel) and for the STOP-CHANGE conditions (below panel). Each trial starts with the presentation of the four empty circles separated by three lines, with one of the circles becoming white after 250 ms. When no STOP signal is presented (i.e., GO condition–above panel), the presentation of the white circle (i.e., GO stimulus) requires participants to execute a right-handed response to judge its position with respect to the middle reference line. GO trials end after the response to the GO stimulus. Reaction times (RTs) on GO trials reflect the efficiency of response execution. When the STOP signal is presented (i.e., SC condition–below panel), participants are instructed to withdraw their right-handed response to the GO stimulus and to execute a left-handed response instead, judging the position of the white circle with respect to the new reference line (higher, middle, lower), as indicated by the pitch of the CHANGE signal (high, medium, low). The interval between the onset of the STOP and CHANGE stimuli (i.e., stop-change delay; SCD) was set to either 0 or 300 ms to create the SCD0 and SCD300 conditions. SC trials end after the response to the CHANGE stimulus. The time required to stop a planned/ongoing response (i.e., stop-signal reaction times, SSRTs) reflects inhibitory control efficiency. Responses on SC trials requires to inhibit a planned, ongoing response and to rapidly execute a different response. Successful performance on these trials relies on the ability to activate different task goals, and to cascade and prioritize different actions [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144364#pone.0144364.ref053" target="_blank">53</a>]. Therefore, RTs on these trials are indicative of the efficiency of action cascading, with shorter RTs indicating more efficient action cascading. ITI: intertrial interval; SSD: stop-signal delay; SCD: stop-change delay.</p