Transmissive Nanohole Arrays for Massively-Parallel
Optical Biosensing
- Publication date
- Publisher
Abstract
A high-throughput optical biosensing
technique is proposed and
demonstrated. This hybrid technique combines optical transmission
of nanoholes with colorimetric silver staining. The size and spacing
of the nanoholes are chosen so that individual nanoholes can be independently
resolved in massive parallel using an ordinary transmission optical
microscope, and, in place of determining a spectral shift, the brightness
of each nanohole is recorded to greatly simplify the readout. Each
nanohole then acts as an independent sensor, and the blocking of nanohole
optical transmission by enzymatic silver staining defines the specific
detection of a biological agent. Nearly 10000 nanoholes can be simultaneously
monitored under the field of view of a typical microscope. As an initial
proof of concept, biotinylated lysozyme (biotin-HEL) was used as a
model analyte, giving a detection limit as low as 0.1 ng/mL