Purification and Biophysical Characterization of the
CapA Membrane Protein FTT0807 from <i>Francisella tularensis</i>
- Publication date
- Publisher
Abstract
The <i>capA</i> gene (FTT0807)
from Francisella
tularensis subsp. tularensis SCHU S4 encodes a 44.4
kDa integral membrane protein composed of 403 amino acid residues
that is part of an apparent operon that encodes at least two other
membrane proteins, CapB, and CapC, which together play a critical
role in the virulence and pathogenesis of this bacterium. The <i>capA</i> gene was overexpressed in Escherichia
coli as a C-terminal His<sub>6</sub>-tagged fusion
with a folding reporter green fluorescent protein (frGFP). Purification
procedures using several detergents were developed for the fluorescing
and membrane-bound product, yielding approximately 30 mg of pure protein
per liter of bacterial culture. Dynamic light scattering indicated
that CapA-frGFP was highly monodisperse, with a size that was dependent
upon both the concentration and choice of detergent. Circular dichroism
showed that CapA-frGFP was stable over the range of 3–9 for
the pH, with approximately half of the protein having well-defined
α-helical and β-sheet secondary structure. The addition
of either sodium chloride or calcium chloride at concentrations producing
ionic strengths above 0.1 M resulted in a small increase of the α-helical
content and a corresponding decrease in the random-coil content. Secondary-structure
predictions on the basis of the analysis of the sequence indicate
that the CapA membrane protein has two transmembrane helices with
a substantial hydrophilic domain. The hydrophilic domain is predicted
to contain a long disordered region of 50–60 residues, suggesting
that the increase of α-helical content at high ionic strength
could arise because of electrostatic interactions involving the disordered
region. CapA is shown to be an inner-membrane protein and is predicted
to play a key cellular role in the assembly of polysaccharides