Bioinspired Strategy for the Ribosomal Synthesis of
Thioether-Bridged Macrocyclic Peptides in Bacteria
- Publication date
- Publisher
Abstract
Inspired
by the biosynthetic logic of lanthipeptide natural products,
a new methodology was developed to direct the ribosomal synthesis
of macrocyclic peptides constrained by an intramolecular thioether
bond. As a first step, a robust and versatile strategy was implemented
to enable the cyclization of ribosomally derived peptide sequences
via a chemoselective reaction between a genetically encoded cysteine
and a cysteine-reactive unnatural amino acid (<i>O</i>-(2-bromoethyl)-tyrosine).
Combination of this approach with intein-catalyzed protein splicing
furnished an efficient route to achieve the spontaneous, post-translational
formation of structurally diverse macrocyclic peptides in bacterial
cells. The present peptide cyclization strategy was also found to
be amenable to integration with split intein-mediated circular ligation,
resulting in the intracellular synthesis of conformationally constrained
peptides featuring a bicyclic architecture