Mechanistic Investigation and Reaction Kinetics of the Low-Pressure Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by a Dizinc Complex

Abstract

The reaction kinetics of the copolymerization of carbon dioxide and cyclohexene oxide to produce poly(cyclohexene carbonate), catalyzed by a dizinc acetate complex, is studied by in situ attenuated total reflectance infrared (ATR-IR) and proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopy. A parameter study, including reactant and catalyst concentration and carbon dioxide pressure, reveals zero reaction order in carbon dioxide concentration, for pressures between 1 and 40 bar and temperatures up to 80 °C, and a first-order dependence on catalyst concentration and concentration of cyclohexene oxide. The activation energies for the formation of poly(cyclohexene carbonate) and the cyclic side product cyclohexene carbonate are calculated, by determining the rate coefficients over a temperature range between 65 and 90 °C and using Arrhenius plots, to be 96.8 ± 1.6 kJ mol<sup>–1</sup> (23.1 kcal mol<sup>–1</sup>) and 137.5 ± 6.4 kJ mol<sup>–1</sup> (32.9 kcal mol<sup>–1</sup>), respectively. Gel permeation chromatography (GPC), <sup>1</sup>H NMR spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry are employed to study the poly(cyclohexene carbonate) produced, and reveal bimodal molecular weight distributions, with narrow polydispersity indices (≤1.2). In all cases, two molecular weight distributions are observed, the higher value being approximately double the molecular weight of the lower value; this finding is seemingly independent of copolymerization conversion or reaction parameters. The copolymer characterization data and additional experiments in which chain transfer agents are added to copolymerization experiments indicate that rapid chain transfer reactions occur and allow an explanation for the observed bimodal molecular weight distributions. The spectroscopic and kinetic analyses enable a mechanism to be proposed for both the copolymerization reaction and possible side reactions; a dinuclear copolymerization active site is implicated

    Similar works

    Full text

    thumbnail-image

    Available Versions