This paper applies an improved method for testing the signal-to-noise ratio (SNR) of Analogue-to-Digital Converters (ADC). In previous work, a noisy and nonlinear pulse signal is exploited as the input stimulus to obtain the signature results of ADC. By applying a machine-learning-based approach, the dynamic parameters can be predicted by using the signature results. However, it can only estimate the SNR accurately within a certain range. In order to overcome this limitation, an improved method based on work is applied in this work. It is validated on the Labview model of a 12-bit 80 Ms/s pipelined ADC with a pulse- wave input signal of 3 LSB noise and 7-bit nonlinear rising and falling edges