research

redicting dynamic specifications of ADCs with a low-quality digital input signal

Abstract

A new method is presented to test dynamic parameters of Analogue-to-Digital Converters (ADC). A noisy and nonlinear pulse is applied as the test stimulus, which is suitable for a multi-site test environment. The dynamic parameters are predicted using a machine-learning-based approach. A training step is required in order to build the mapping function using alternate signatures and the conventional test parameters, all measured on a set of converters. As a result, for industrial testing, only a simple signature-based test is performed on the Devices-Under-Test (DUTs). The signature measurements are provided to the mapping function that is used to predict the conventional dynamic parameters. The method is validated by simulation on a 12-bit 80 Ms/s pipelined ADC with a pulse wave input signal of 3 LSB noise and 7-bit nonlinear rising and falling edges. The final results show that the estimated mean error is less than 4% of the full range of the dynamic specifications

    Similar works