Role of Sodium Ion on TiO<sub>2</sub> Photocatalyst:
Influencing Crystallographic Properties or Serving as the Recombination
Center of Charge Carriers?
There have been continuing debates
about the role of Na<sup>+</sup> on TiO<sub>2</sub> photocatalyst
in the past decades. Most researchers
accepted that Na<sup>+</sup> served as the recombination center of
photogenerated electrons and holes. Nevertheless, other opinions also
existed, such as Na<sup>+</sup> increased the crystallite size of
TiO<sub>2</sub>, Na<sup>+</sup> hampered the crystallization of anatase
TiO<sub>2</sub>, and Na<sup>+</sup> promoted the formation of brookite
TiO<sub>2</sub> or titanate sodium. In this research, we have systematically
investigated the role of Na<sup>+</sup> during the fabrication of
TiO<sub>2</sub> film and powder through the sol–gel method
and studied the influences of crystallinity and the content of Na<sup>+</sup> on the photocatalytic activities of TiO<sub>2</sub> film
and powder. It has been found that the existence of Na<sup>+</sup> in TiO<sub>2</sub> film and powder should influence their crystallographic
properties, in detail, inhibiting the crystallization and growth of
anatase phase in TiO<sub>2</sub> film and powder, promoting the formation
of brookite phase in TiO<sub>2</sub> film, and increasing the transformation
temperature of anatase to rutile phase in TiO<sub>2</sub> powder.
Even though the existence of Na<sup>+</sup> forms the Ti–O–Na
bond on the surface of TiO<sub>2</sub>, however, the widely adopted
hypothesis of Na<sup>+</sup> serving as the recombination center of
photogenerated electrons and holes is not correct