LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue

Abstract

We have shown previously that coupling of high field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility, with liquid extraction surface analysis (LESA) mass spectrometry of tissue results in significant improvements in the resulting protein mass spectra. Here, we demonstrate LESA FAIMS mass spectrometry imaging of proteins in sections of mouse brain and liver tissue. The results are compared with LESA mass spectrometry images obtained in the absence of FAIMS. The results show that the number of different protein species detected can be significantly increased by incorporating FAIMS into the workflow. A total of 34 proteins were detected by LESA FAIMS mass spectrometry imaging of mouse brain, of which 26 were unique to FAIMS, compared with 15 proteins (7 unique) detected by LESA mass spectrometry imaging. A number of proteins were identified including α-globin, 6.8 kDa mitochondrial proteolipid, macrophage migration inhibitory factor, ubiquitin, β-thymosin 4, and calmodulin. A total of 40 species were detected by LESA FAIMS mass spectrometry imaging of mouse liver, of which 29 were unique to FAIMS, compared with 24 proteins (13 unique) detected by LESA mass spectrometry imaging. The spatial distributions of proteins identified in both LESA mass spectrometry imaging and LESA FAIMS mass spectrometry imaging were in good agreement indicating that FAIMS is a suitable tool for inclusion in mass spectrometry imaging workflows

    Similar works