Reactions of 2‑Methyltetrahydropyran on Silica-Supported Nickel Phosphide in Comparison with 2‑Methyltetrahydrofuran

Abstract

The reactions of 2-methyltetrahydropyran (2-MTHP, C<sub>6</sub>H<sub>12</sub>O) on Ni<sub>2</sub>P/SiO<sub>2</sub> provide insights on the interactions between a cyclic ether, an abundant component of biomass feedstock, with a transition-metal phosphide, an effective hydrotreating catalyst. At atmospheric pressure and a low contact time, conditions similar to those of a fast pyrolysis process, 70% of products formed from the reaction of 2-MTHP on Ni<sub>2</sub>P/SiO<sub>2</sub> were deoxygenated products, 2-hexene and 2-pentenes, indicating a good oxygen removal capacity. Deprotonation, hydrogenolysis, dehydration, and decarbonylation were the main reaction routes. The reaction sequence started with the adsorption of 2-MTHP, followed by ring-opening steps on either the methyl substituted side (Path I) or the unsubstituted side (Path II) to produce adsorbed alkoxide species. In Path I, a primary alkoxide was oxidized at the α-carbon to produce an aldehyde, which subsequently underwent decarbonylation to 2-pentenes. The primary alkoxide could also be protonated to give a primary alcohol which could desorb or form the final product 2-hexene. In Path II, a secondary alkoxide was oxidized to produce a ketone or was protonated to a secondary alcohol that was dehydrated to give 2-hexene. The active sites for the adsorption of 2-MTHP and <i>O</i>-intermediates were likely to be Ni sites

    Similar works

    Full text

    thumbnail-image

    Available Versions