Fossil
Fuel Combustion-Related Emissions Dominate
Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence
from <sup>15</sup>N‑Stable Isotope in Size-Resolved Aerosol
Ammonium
- Publication date
- Publisher
Abstract
The
reduction of ammonia (NH<sub>3</sub>) emissions is urgently
needed due to its role in aerosol nucleation and growth causing haze
formation during its conversion into ammonium (NH<sub>4</sub><sup>+</sup>). However, the relative contributions of individual NH<sub>3</sub> sources are unclear, and debate remains over whether agricultural
emissions dominate atmospheric NH<sub>3</sub> in urban areas. Based
on the chemical and isotopic measurements of size-resolved aerosols
in urban Beijing, China, we find that the natural abundance of <sup>15</sup>N (expressed using δ<sup>15</sup>N values) of NH<sub>4</sub><sup>+</sup> in fine particles varies with the development
of haze episodes, ranging from −37.1‰ to −21.7‰
during clean/dusty days (relative humidity: ∼ 40%), to −13.1‰
to +5.8‰ during hazy days (relative humidity: 70–90%).
After accounting for the isotope exchange between NH<sub>3</sub> gas
and aerosol NH<sub>4</sub><sup>+</sup>, the δ<sup>15</sup>N
value of the initial NH<sub>3</sub> during hazy days is found to be
−14.5‰ to −1.6‰, which indicates fossil
fuel-based emissions. These emissions contribute 90% of the total
NH<sub>3</sub> during hazy days in urban Beijing. This work demonstrates
the analysis of δ<sup>15</sup>N values of aerosol NH<sub>4</sub><sup>+</sup> to be a promising new tool for partitioning atmospheric
NH<sub>3</sub> sources, providing policy makers with insights into
NH<sub>3</sub> emissions and secondary aerosols for regulation in
urban environments