Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2

Abstract

The accuracies of the excited-state dipole and quadrupole moments obtained by TD-DFT are assessed by considering 16 different exchange-correlation functionals and more than 30 medium and large molecules. Except for excited-state presenting a significant charge-transfer character, a relatively limited dependency on the nature of the functional is found. It also turns out that while DFT ground-state dipole moments tend to be too large, the reverse trend is obtained for their excited-state counterparts, at least when hybrid functionals are used. Consequently, the TD-DFT excess dipole moments are often too small, an error that can be fortuitously corrected for charge-transfer transition by selecting a pure or a hybrid functional containing a small share of exact exchange. This error-cancelation phenomena explains the contradictory conclusions obtained in previous investigations. Overall, the largest correlation between CC2 and TD-DFT excess dipoles is obtained with M06-2X, but at the price of a nearly systematic underestimation of this property by ca. 1 D. For the excess quadrupole moments, the average errors are of the order of 0.2–0.6 D·Å for the set of small aromatic systems treated

    Similar works