Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest–Host Complex

Abstract

Using the electrostatic complex of G4 poly­(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest–host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. The insights into the spatial location of the guest molecules as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest–host system for biomedical applications

    Similar works

    Full text

    thumbnail-image

    Available Versions