Nd<sup>3+</sup>-Sensitized Upconversion Nanostructure as a Dual-Channel Emitting Optical Probe for Near Infrared-to-Near Infrared Fingerprint Imaging

Abstract

Lanthanide upconversion nanophosphors (Ln-UCNPs) have attracted great attention in a variety of fields, benefiting from low background fluorescence interference and a high signal-to-noise ratio of upconversion luminescence. However, the establishment of Ln-UCNPs with dual near-infrared (NIR) emission channels still remains challenging. Herein, we report the design and synthesis of Nd<sup>3+</sup>-sensitized NaYbF<sub>4</sub>:Tm@NaYF<sub>4</sub>:Yb@NaNdF<sub>4</sub>:Yb hierarchical-structured nanoparticles that emit NIR luminescence at 696 and 980 nm under excitation at 808 nm. The sensitizer-rich NaYbF<sub>4</sub> core promotes efficient energy transfer to Tm<sup>3+</sup>. The interlayer of NaYF<sub>4</sub>:Yb effectively prevents the cross-relaxation process from Tm<sup>3+</sup> to Nd<sup>3+</sup> and thus enhances the luminescence emission. The introduction of Nd<sup>3+</sup> ion as the sensitizer transforms the excitation wavelength from 980 to 808 nm, which subtly averts the laser-induced thermal effect and offers a new pathway for the NIR emission channel at 980 nm. The as-prepared nanoparticles were further applied in developing latent and blood fingerprint images, which exhibited high signal-to-noise ratio and distinguishable details under 808 nm excitation with negligible thermal damage to the sample. Our work provides a promising strategy to realize NIR-to-NIR dual-channel emissions in Ln-UCNPs. With further functionalization, such nanoparticles are expected to have great potential in forensic and biological sciences

    Similar works

    Full text

    thumbnail-image