Unexpected Trend in Stability of Xe–F Compounds under Pressure Driven by Xe–Xe Covalent Bonds

Abstract

Xenon difluoride is the first and the most stable of hundreds of noble-gas (Ng) compounds. These compounds reveal the rich chemistry of Ng’s. No stable compound that contains a Ng–Ng bond has been reported previously. Recent experiments have shown intriguing behaviors of this exemplar compound under high pressure, including increased coordination numbers and an insulator-to-metal transition. None of the behaviors can be explained by electronic-structure calculations with fixed stoichiometry. We therefore conducted a structure search of xenon–fluorine compounds with various stoichiometries and studied their stabilities under pressure using first-principles calculations. Our results revealed, unexpectedly, that pressure stabilizes xenon–fluorine compounds selectively, including xenon tetrafluoride, xenon hexafluoride, and the xenon-rich compound Xe<sub>2</sub>F. Xenon difluoride becomes unstable above 81 GPa and yields metallic products. These compounds contain xenon–xenon covalent bonds and may form intercalated graphitic xenon lattices, which stabilize xenon-rich compounds and promote the decomposition of xenon difluoride

    Similar works

    Full text

    thumbnail-image

    Available Versions